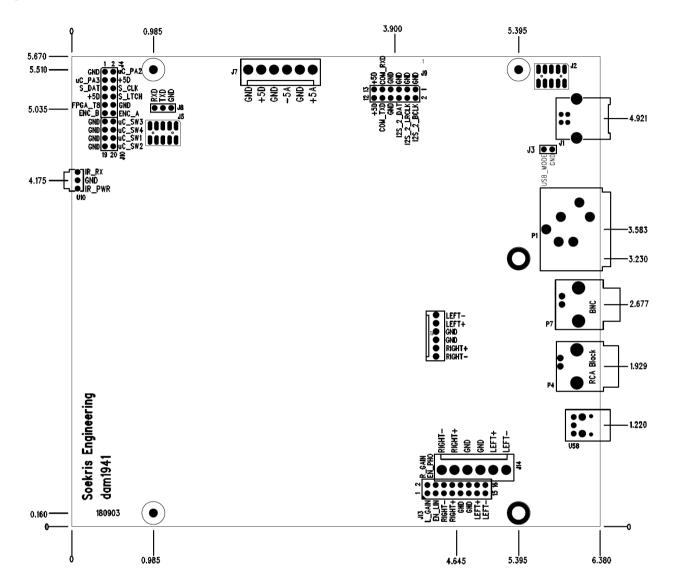


# Discrete R-2R Sign Magnitude DAC Module



The Soekris dam1921/dam1941 discrete R-2R Sign Magnitude DAC is a highly integrated OEM module with absolute highest sound quality, designed to be used in a DAC using the OEMs own power supplies and output buffers. Input is USB, I2S and Coax/Toslink SPDIF, with reclocking FIFO. Clocking is with ultra low jitter digital programmable oscillator. The board has support for different levels of user interfaces, from just a basic DAC to a DAC/HeadAmp with full volume controls. Outputs are directly from the R-2R Sign Magnitude resistor networks, the dam1941 have four resistor networks for full balanced outputs, the dam1921 have just two of them mounted, for single ended outputs. The board is manufactured in Denmark using high reliability advanced surface mount technology.

We also offer a set of bare PCBs as example implementation of a Power Supply Board, an Output buffer Board and an User Interface / Display Board, they can be used for testing and as baseline for you own designs.


The dam1941 is the fully mounted balanced version, the dam1921 is the same board with only half the resistor networks mounted so it's single ended, but otherwise the same.

# **Quick Specifications**

| Product Name                  | dam1941-12                           | dam1921-02              |  |  |
|-------------------------------|--------------------------------------|-------------------------|--|--|
| THD @ -1db                    | < 0.005 %                            | < 0.008%                |  |  |
| THD @ -60dB                   | < 0.02 %                             | < 0.03%                 |  |  |
| Clock Jitter RMS              | 0.3 pS                               | typical                 |  |  |
| Resistor Precision            | 27 bit, 0.01% / 0.02% Resistors      | 27 bit, 0.02% resistors |  |  |
| S/N ratio at 20 Khz Bandwith  | 132 dB unweighted                    | 129 dB unweighted       |  |  |
| Frequency Range +0.1dB -1.0dB | 20hz - 20Khz                         |                         |  |  |
| Input SPDIF                   | Up to 24 bit / 192 Khz               |                         |  |  |
| Input USB / I2S PCM           | Up to 24 bit / 384 Khz               |                         |  |  |
| Input USB / I2S DSD           | Up to DoP128 and DSD256              |                         |  |  |
| Digital volume control        | -90 dB to +10 dB                     |                         |  |  |
| Output Line                   | SE 1.3V RMS, Bal 2.6V RMS, Zout 625R |                         |  |  |
| Power Input                   | +5V max 0.6A, -5V max 0.1A           |                         |  |  |
| Board Size                    | 144 x 162 x 30 mm                    |                         |  |  |

# Interface

Pinout and mechanical drawing, component side view, all measurement are in inches, connector position are to center of connectors.



#### Pin Description J7, Power Connection, 6 pins MTA156 Header.

| Pin | Name  | Туре        | Description       |
|-----|-------|-------------|-------------------|
| 1   | GND   | Power       | Ground            |
| 2   | VCC5D | Power Input | +5V Digital Power |
| 3   | GND   | Power       | Ground            |
| 4   | VEE5A | Power Input | -5V Analog Power  |
| 5   | GND   | Power       | Ground            |
| 6   | VCC5A | Power Input | +5V Analog Power  |

| Pin | Name       | Туре         | Description                        |
|-----|------------|--------------|------------------------------------|
| 1   | GND        | Power        | Ground                             |
| 2   | uC_PA2     | I/O          | Spare Signal, Connected to uC      |
| 3   | uC_PA3     | I/O          | Spare Signal, Connected to uC      |
| 4   | +5D        | Power Output | +5V Digital Power to Display Board |
| 5   | S_DAT      | Output       | Serial Data to Display Board       |
| 6   | S_CLK      | Output       | Serial Clock to Display Board      |
| 7   | +5D        | Power Output | +5V Digital Power to Display Board |
| 8   | S_LTCH     | Output       | Serial Latch to Display Board      |
| 9   | FPGA_T8    | I/O          | Spare Signal, Connected to FPGA    |
| 10  | GND        | Power        | Ground                             |
| 11  | ENC_B      | Input        | Connected to B Signal on Encoder   |
| 12  | ENC_A      | Input        | Connected to A Signal on Encoder   |
| 13  | GND        | Power        | Ground                             |
| 14  | uC_Switch3 | Input        | Input Select Switch to uC          |
| 15  | GND        | Power        | Ground                             |
| 16  | uC_Switch4 | Input        | XFeed Select Switch to uC          |
| 17  | GND        | Power        | Ground                             |
| 18  | uC_Switch1 | Input        | Filter Select Switch to uC         |
| 19  | GND        | Power        | Ground                             |
| 20  | uC_Switch2 | Input        | Output Select Switch to uC         |

# Pin Description J4, User Interface, 2x10 pins 0.1" Header, Right Angle.

# Pin Description J13, Output to Buffer Board, 2x8 pins 0.1" Header, Right Angle.

| Pin | Name   | Туре   | Description                                        |
|-----|--------|--------|----------------------------------------------------|
| 1   | L_Gain | Output | Control Signal to Increase Output Buffer Gain 8 dB |
| 2   | R_Gain | Output | Control Signal to Increase Output Buffer Gain 8 dB |
| 3   | EN_LIN | Output | Control Signal to Enable Line Output               |
| 4   | EN_PHO | Output | Control Signal to Enable Headphone Output          |
| 5   | Right- | Output | Right Negative Output from R-2R Resistor Network   |
| 6   | Right- | Output | Right Negative Output from R-2R Resistor Network   |
| 7   | Right+ | Output | Right Positive Output from R-2R Resistor Network   |
| 8   | Right+ | Output | Right Positive Output from R-2R Resistor Network   |
| 9   | GND    | Power  | Ground                                             |
| 10  | GND    | Power  | Ground                                             |
| 11  | GND    | Power  | Ground                                             |
| 12  | GND    | Power  | Ground                                             |
| 13  | Left+  | Output | Left Positive Output from R-2R Resistor Network    |
| 14  | Left+  | Output | Left Positive Output from R-2R Resistor Network    |
| 15  | Left-  | Output | Left Negative Output from R-2R Resistor Network    |
| 16  | Left-  | Output | Left Negative Output from R-2R Resistor Network    |

Note: Right- and Left- are no connects on the dam1921.

#### Pin Description J7, Signal Output, Holes for soldering.

| Pin | Name   | Туре   | Description                                      |
|-----|--------|--------|--------------------------------------------------|
| 1   | Left-  | Output | Left Negative Output from R-2R Resistor Network  |
| 2   | Left+  | Output | Left Positive Output from R-2R Resistor Network  |
| 3   | GND    | Power  | Ground                                           |
| 4   | GND    | Power  | Ground                                           |
| 5   | Right+ | Output | Right Positive Output from R-2R Resistor Network |
| 6   | Right- | Output | Right Negative Output from R-2R Resistor Network |

#### Pin Description J8, Serial Console, 1x3 pins 0.1" Header.

| Pin | Name | Туре   | Description                                    |
|-----|------|--------|------------------------------------------------|
| 1   | GND  | Power  | Ground                                         |
| 2   | TXD  | Output | RS-232 Serial Input for Management, TTL Level  |
| 3   | RXD  | Input  | RS-232 Serial Output for Management, TTL Level |

# Pin Description J9, 2<sup>nd</sup> I2S input, 2x6 pins 0.1" Header

| Pin | Name      | Туре         | Description                                    |
|-----|-----------|--------------|------------------------------------------------|
| 1   | GND       | Power        | Ground                                         |
| 2   | I2S BCLK  | Input        | 2 <sup>nd</sup> I2S Bit Clock                  |
| 3   | GND       | Power        | Ground                                         |
| 4   | I2S LRCLK | Input        | 2 <sup>nd</sup> I2S LR Clock                   |
| 5   | GND       | Power        | Ground                                         |
| 6   | I2S DAT   | Input        | 2 <sup>nd</sup> I2S Audio Data                 |
| 7   | GND       | Power        | Ground                                         |
| 8   | GND       | Power        | Ground                                         |
| 9   | RXD       | Input        | RS-232 Serial Output for Management, TTL Level |
| 10  | TXD       | Output       | RS-232 Serial Input for Management, TTL Level  |
| 11  | +5D       | Power Output | +5V Digital Power                              |
| 12  | +5D       | Power Output | +5V Digital Power                              |

Pin Description U58: Toslink Optical SPDIF Digital Audio Input.

Pin Description P4: RCA Coax SPDIF Digital Audio Input.

Pin Description P7: BNC Coax SPDIF Digital Audio Input.

Pin Description P1: AES/EBU SPDIF Digital Audio Input.

Pin Description J1: USB UAC2 Digital Audio Input.

# **Electrical Characteristics**

The dam19x1 is powered by VCC5D for the digital parts and VCC5A and VEE5A for the analog parts. The USB Interface is powered from USB Power. There is no requirement for specific ramp up/down, although to avoid DC voltage on the outputs all power pins should ramp up and down within 0.5 sec of each other.

#### **Operating Conditions**

| Pin         |                                    | Min  | Тур  | Max  | Units |
|-------------|------------------------------------|------|------|------|-------|
| VCC5D       | Digital Power                      | 4.7  | 5.0  | 5.3  | V     |
| VCC5A       | Analog Positive Power              | 4.7  | 5.0  | 5.3  | V     |
| VEE5A       | Analog Negative Power              | -4.7 | -5.0 | -5.3 | V     |
|             | Ripple and Noise on all Power Pins |      | 2    | 20   | mV PP |
|             |                                    |      |      |      |       |
| Input Pins  | Input Voltage Low                  | -0.5 |      | 0.8  | V     |
|             | Input Voltage High                 | 2.0  |      | 3.9  | V     |
| Output Pins | All Digital Outputs                | 0    |      | 3.3  | V     |

#### **Current Consumption**

| VCC5D | Digital Power                 | 250 | 350 | mA |
|-------|-------------------------------|-----|-----|----|
| VCC5D | Typical Display               | 80  | 150 | mA |
| VCC5A | dam1921 Analog Positive Power | 25  | 45  | mA |
| VEE5A | dam1921 Analog Negative Power | 25  | 45  | mA |
| VCC5A | dam1941 Analog Positive Power | 45  | 85  | mA |
| VEE5A | dam1941 Analog Negative Power | 45  | 85  | mA |
| USB   | USB Power for USB Interface   | 100 | 200 | mA |

## Analog Audio Output

The dam19x1 is a Sign Magnitude R-2R DAC, built with a high number of small very high precision thin film resistors. The outputs are ideal voltage sources with an output impedance of 625 ohm per R-2R Resistor Network, so no I-V converter is needed and should be avoided. There is no requirement for a specific load, but low impedance loads will reduce the output voltage.

The dam1941 can be set for "Parallel" mode, in that case it will be single ended outputs with an output impedance of 313 ohms.

## **Digital Audio Inputs**

The USB and I2S inputs can take up to 24 bit / 384 Khz PCM and up to 5.6 Mbit DoP and 11.2 Mbit DSD, the I2S format must be with 32 bits per audio word. The SPDIF inputs can take up 24 bit / 192 Khz PCM only. As default the dam1921/dam1941 will autoselect between the USB and SPDIF inputs with active signals, with priority to the SPDIF so when there is no valid SPDIF signal the USB input will be selected.

# Software Configuration and Control

The dam1921/dam1941 have a small 32 bit ARM based microcontroller with a small monitor for configurations, the uManager, and control functions over the serial port. At power up in will be in control mode, where short commands can be used to set the volume and filter type.

The uManager monitor can be entered by entering "+++" followed by a one second pause. It will then write the signon message and a "#" prompt, then waiting for commands. The uManager is a command line driven program for configuration and downloading new firmware. Typing "?" or "Help" at the command prompt will show a short list of commands available.

## uManager Commands

| ? or Help       | show this help                           |
|-----------------|------------------------------------------|
| set par=value   | set paramter to value, set alone to show |
| conspeed = 96   | 500   19200   38400   57600   115200     |
| volume = fixe   | d -80 - +10, line output startup volume  |
| filter = linear | mixed   minimum   soft                   |
| mode = norma    | al   parallel                            |
| download        | download and update system flash         |
| update          | update uManager firmware                 |
| filters [all]   | show selected or all filters             |
| df [adr]        | dump flash content                       |
| exit            | exit uManager                            |

The default serial port is set for 115200, n,8,1, but the speed can be changed with "set conspeed=" command, the default volume is "0 db", the default filter is "mixed".

# **Updating firmware**

The dam19x1 firmware can be upgraded though the serial port, either in one step or you can upgrade the uManager, FPGA or Filters seperately. When upgrading uManager you need to also enter an "update" command, but not if only download new FPGA firmware or new filters.

To update the dam19x1 firmware you need to have the Serial Port connected and working with a terminal emulator software package, t.ex. Hyperterminal on Windows. Enter the uManager by typing "+++", following by a pause. You should then get the uManager promt, you then type:

# download

Start download session using 1K Xmodem CRC protocol, when all is downloaded you also need to update the uC with new firmware, but only if you downloaded a new version.

# update

You then need to do a power cycle to restart everything, you can then enter uManager again to verify the new revisions.

## **Serial Port runtime Control**

When in the normal runmode the controller will send short status messages and receive short commands over the serial port using the COM\_RXD and COM TXD signals.

#### **Status Messages**

| Rx.xx | uManager firmware version                                                                        |
|-------|--------------------------------------------------------------------------------------------------|
| Mx    | Configuration mode.                                                                              |
| Ix    | Input select mode, $7 = Auto$ , $0 = USB$ , $1 = AES/EBU$ , $2 = BNC$ , $3 = RCA$ , $4 =$        |
|       | Toslink, $5 = I2S$ .                                                                             |
| Fx    | Filter Type, $4 = \text{linear}$ , $5 = \text{mixed}$ , $6 = \text{minimum}$ , $7 = \text{soft}$ |
| Lxxx  | Link Speed, 000 = unlocked, 044-384 PCM speed, 02M, 05M & 11M DSD speed                          |
| Vxxx  | Volume, $-90$ to $+10$ , default set to 0                                                        |
| Px    | Phase, $N = Normal$ , $I = Inverted$ , default is Normal                                         |
| Xx    | Crossfeed Mode $03$ , $0 = off$ , $3 = max$ , only valid when headphones are selected            |

#### **Command Messages**

| l |
|---|
| ] |

The dam19x1 will acknowledge all command messages as status messages.

## **Custom filters**

The dam1921/dam1941 upsamples everything to the final 2.8/3.1 Mhz DAC sample rate in two steps, there are three different filters in the dam19x1:

FIR1, when input is PCM it will upsample from incoming sample rate to 352/384 Khz in one step, with different filter lenght based on incoming sample rate, when input is DSD it will be filtered and decimated to 352 Khz. There can be four different set of filter types.

IIR, bank of 15 biquads operating at 352/384 Khz, with one used for the CD de-emphasis filter, none otherwise used for the basic DAC. Please note that biquad number 16 to 23 is reserved for the crossfeed function.

FIR2, upsampling from 352/384 Khz to 2.8/3.1 Mhz. There can be four different types, usually

matching those in FIR1

All filters are using 32 bit coefficients, with up to 67 bit MAC accumulator. The filter file format is the same as used in the dam1021, the files are available at http://www.soekris.dk

Recommended Windows filter software package is rePhase, available at

https://sourceforge.net/projects/rephase/

#### Power Supply psu1951

The psu1951 is an optional bare PCB and provided as an example, you're free to provide your own more advanced power supply, although the psu1951 is good by itself. As a minimum you need to mount the +-5V sections, the +-12V sections are if you use a buffer solution that require higher voltages. Please note that the buf1961 will work just fine at +-5V using the standard parts in the BOM. The psu1951 has space for a 115/230V selector for worldwide use, if you don't need it you can mount wires instead. **Please note that the text on the PCB is incorrect for J4, it should be like J1.** The regulator IC's U1, U4 and U5 should be mounted on the small heatsinks using thermal isolator pads.

## **Output Buffer buf1961**

The buf1961 is an optional bare PCB and provided as an example, you're free to provide your own more advanced buffer, although the buf1961 is good by itself. It can be mounted in three versions, as Single Ended In / Single Ended Out and Single Ended In / Balanced Out for the dam1921, and Balanced In / Balanced Out for the dam1941. If the buffer opamps are with rail to rail outputs, like the recommended parts, the buf1961 works fine with +-5V power, otherwise higher supply voltage is needed, which a fully mounted psu1951 can supply. Please note the only the Power pins on J5 should be connected, it will get GND though J4 from the dam19x1. The buf1961 is for Line Output, a headphones amplifier is something you need to find yourself if you want the functionality. Any headphones amplifier should have a +8 dB gain control, using the pins from J13 to control the gain for each channel. There should also be enable circuit for line out and headphones. There are footprints on the buf1961 for dual opamps in both so package and for dip sockets in case you want to experiments with different opamps. Most dual opamps should work as long as it's unity gain stable. We can recommend three TI parts: The opa1678, a new high performance low cost all CMOS part.

The opa1612, a well renowed high performance dual bipolar part.

## User Interface dsp1941

The dsp1941 is an optional bare PCB and provided as an example, you're free to provide your own version. The dsp1941 is designed for the full user interface ala dac1541, if you don't need the headphones control section you can cut the PCB at the point where the ground layer ends. It uses smd parts for the shift registers, those should be mounted first. The LED should be mounted last to fit your case. Buttons:

- S5: Input Select
- S3: Filter Select
- S8: CrossFeed Select
- S4: Output Select

Please see the dac5141 manual for buttons usage and display information.